首页> 外文OA文献 >Learning Random Kernel Approximations for Object Recognition
【2h】

Learning Random Kernel Approximations for Object Recognition

机译:学习目标识别的随机核近似

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Approximations based on random Fourier features have recently emerged as anefficient and formally consistent methodology to design large-scale kernelmachines. By expressing the kernel as a Fourier expansion, features aregenerated based on a finite set of random basis projections, sampled from theFourier transform of the kernel, with inner products that are Monte Carloapproximations of the original kernel. Based on the observation that differentkernel-induced Fourier sampling distributions correspond to different kernelparameters, we show that an optimization process in the Fourier domain can beused to identify the different frequency bands that are useful for predictionon training data. Moreover, the application of group Lasso to random featurevectors corresponding to a linear combination of multiple kernels, leads toefficient and scalable reformulations of the standard multiple kernel learningmodel \cite{Varma09}. In this paper we develop the linear Fourier approximationmethodology for both single and multiple gradient-based kernel learning andshow that it produces fast and accurate predictors on a complex dataset such asthe Visual Object Challenge 2011 (VOC2011).
机译:最近,基于随机傅立叶特征的逼近已成为一种设计大型内核机的高效且形式上一致的方法。通过将内核表示为傅立叶展开式,基于有限的随机基础投影集生成特征,这些投影是从内核的傅立叶变换中采样的,其内积是原始内核的蒙特卡洛近似。基于观察到的不同的核诱导傅里叶采样分布对应于不同的内核参数,我们表明傅里叶域中的优化过程可用于识别可用于预测训练数据的不同频带。此外,将组Lasso应用于与多个内核的线性组合相对应的随机特征向量会导致对标准多内核学习模型\ cite {Varma09}进行高效且可扩展的重构。在本文中,我们针对基于单个和多个基于梯度的内核学习开发了线性傅里叶逼近方法,并表明它可以在诸如Visual Object Challenge 2011(VOC2011)之类的复杂数据集上产生快速而准确的预测变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号